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By MANUEL STEIN

SUMMARY

By means of a rigorous analysis of a three-
element column on a nonlinear elastic foundation,
the phenomenon of change in buckle pattern s
investigated. A discussion of how the present
results may be applied to plates and other elastic
structures is given.

INTRODUCTION

One of the phenomena which have been observed
in the postbuckling behavior of various stiffened
and unstiffened plates and shells is change in
buckle pattern occurring when the buckle mode
becomes unstable and the structure seeks a stable
configuration. The point of instability of the
original buckle mode has not been studied
rigorously heretofore, and the mechanism of
change has not been described. In order to
analyze this phenomenon, a model was chosen
which exhibits the important properties associated
with a change in buckle pattern of plates and for
which an exact solution could be obtained. The
model chosen is a symmetric three-element
column restrained by nonlinear springs which
introduce the cubic nonlinear characteristics of
plates and some other elastic structures. The
present analysis includes a rigorous study of
stability for this model in its various modes.
The way in which the present results may be
applied to other elastic structures is indicated.

SYMBOLS

l length of each of three rigid rods

C stiffness of torsional springs

K, K, stiffness of nonlinear extensional
springs, force/length?

P total compressive load

deflection of joints in column (see
fig. 1)

Wy, We

Wy ,0, Wa .o initial deflection of joints in column
W W,

£= 2
W — W,
2

A total shortening

6, 05, 03, 04 angles formed upon deflection of

column (see fig. 1)

ANALYSIS

The model considered is a column consisting
of three rigid rods connected by linear torsional
springs and supported along the length by non-
linear extensional springs as shown in figure 1.
The rods are of equal length, and the restoring
force of each of the nonlinear springs is considered

Figure 1.—Three-element column connected by linear
torsional springs and laterally restrained by nonlinear
extensional springs.

1 The information presented herein was a part of a dissertation entitled “Postbuckling Behavior of Rectangular Plates” which was offered in partia
fulfillment of the requirements for the degree of Doctor of Philosophy in Applied Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia,

June 1958.
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to be proportional to the cube of its displacement.
The stability of this column is investigated for
both the controlled-loading and controlled-
shortening types of load application.

Since the stability is of interest, it is convenient
to use an energy method of approach. The
equilibrium configurations, that is, those con-
figurations for which the potential energy is an
extremum are found. These extremums are then
investigated to see which of them are minimums
(and hence imply stability) and which are not
minimums (and hence imply instability). Solu-
tions are presented in the form of load-shortening
curves.

TOTAL POTENTIAL ENERGY

The potential energies of the elements of the
system are summed to obtain the total potential

energy. For the nonlinear springs, the force F_

in the spring is proportional to the cube of the
displacement w of the spring; that is, F=Ku?.
The strain energy in a spring is related to the force
and displacement as given in the expression

f Fdw. Thus, the potential (strain) energy of
0

the nonlinear springs I, is expressed by
K K, (w+w,\*
lez<w14+w24>+f<%) (1)

With the assumption that the deflections are
small when compared with the length of the
column, the angles are given in terms of the
deflections by

03:2w1l—_uﬁ
04:2w2l—w1

By making use of this assumption, the potential
(strain) energy of the torsional springs II, can be
written as

ey (o) ()] e

The shortening A of the column is
A=1{3—[cos 8,4 cos 0,+cos (6;—6,)]}

or, with the assumption of small deflections,
1 .
A:2—l [wy+wy"+ (W —wy)?] (3)

The potential energy II; of the load P is the
negative product of load and shortening; therefore,

H3=_§ [w*+wy? 4 (w,—w,)?] (4)

Before proceeding to use the equations just given
for the energies, 1t is convenient to express w, and
we in terms of ¢ and 7 according to

it w,

="

W, — W,
2

Note that when n=0 the deflections are symmetric,
and when £§=0 the deflections are antisymmetric.
In terms of the new variables the energies expressed
in equations (1), (2), and (4), respectively, become

M= (h6gtrt )+ g (5)
=5 o) (©
= (4377 )

and equation (3) for the shortening becomes
1
A=] (E+3r) ®)

The total potential energy is
=1L, +11;+-1I,
for controlled loading and
T=1I,+1I,

for controlled shortening. For controlled short-
ening the potential energy is equal to the strain
energy of the system.

CONTROLLED LOADING

According to the minimum-potential-energy
method, the variation of the total potential energy
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of the system must vanish. For controlled load-
ing, this requirement may be expressed by

ag ‘SHa

or, since the variations of ¢ and % are perfectly
arbitrary, by

ol

26"
oIl
Ell

Thus, the conditions.for buckling are

e[ Ko+ 5 e - Ieo
(9)
o[ K@) +95-57 |0

\-

A possible solution for ¢ and 5 is

7=0

Pl_,
20 C (10)

52
'K, +§

Another possible solution is

£=0

r=ig (o—3) "

There also exists a possible third solution where
neither £ nor 5 is zero:

Pl
40 40 4 ——13
TIPK .. K,
16—? ]
X P & (12)
,__3CK, 4 E+3_?
TR T K
K 7

This third solution gives deflections which are
neither symmetric nor antisymmetric. Note that
for the various possible solutions, limitations may
be set down immediately on the ranges of loading

which may be considered. Real values of £ and
n and, therefore, of the deflections w, and w, will
occur in the first solution only if Pl/C>1, in
the second if PI/C™>3, and in the third if
either <4 §+3>>ﬂ 13 Pl

>§ for 16 K >K, or > 8

><4 -I—3> for K;>16K. In these ranges the

three solutions represent equilibrium positions.

The shortening expressed in equation (8) can
now be written for each of the three solutions.
For =0,

Py
KZ3A:2 C (13)
A ¢
K
For £¢=0,
KA Pl
S (- ) (14)
For both £#0 and 50, .
Pl
Kia Pl K 4713 15)
0 0 TR K
K

These three equations are the load-shortening
relations for the possible equilibrium positions
(or modes) and are subject to the aforementioned
limitations on P.

The stability of the column in each of the three
modes is discussed next. For this column the
second variation of the potential energy is

6211:6—52 (88)*+2 55— béb (6%) (5‘0)4—3 2 (0n)°
For stability in a given equilibrium configuration,
the second variation must be positive definite
in the arbitrary 8¢ and &7 for this configuration.
Thus, for stability, both of the coefficients of the
squared terms must be positive, and the discrimi-
nant of the preceding quadratic form must be
negative. If one or both of the coefficients of the
squared terms are negative, or if the discriminant
is positive, the equilibrium configuration is un-
stable.
The ranges of stability are as follows:

For »=0,

1< 0<<4 +3> (16)
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For £¢=0,
13 Pl
<0 (17)

For both £#0 and 50,
K Pl 13
(4+3)<o<s (1s)

In all other ranges of equilibrium the column is
unstable.

Load-shortening curves for the column subject
to a controlled load are shown in figure 2 with
the stable and unstable portions indicated. Each
set of curves is composed of three straight lines.
The line originating at Pl/C=1 (initial buckling
load) represents the symmetric equilibrium con-
figuration, the line originating at Pl/C=3 (un-
stable higher buckling load) represents the anti-
symmetric equilibrium configuration, and a transi-
tion line which extends only between the other
two lines represents the equilibrium configuration

8r— 8—

which is neither symmetric nor antisymmetric’
Similar load-shortening curves are described later
for the column subject to controlled shortening
and then both sets of curves are discussed.

CONTROLLED SHORTENING

For a loading of the type given by a controlled-
shortening machine, the deflections w;, and w. are
related to each other in terms of the applied
shortening A. In the variables ¢ and #, this
relationship is expressed by

lA=g+39"

The potential energy for controlled shortening is
the strain energy (II=IL,+1I;). The variable &
may be eliminated from the strain energy to obtain

H=§ [(1A—392)24-6(1A—3nD)n>+71 -
+55 o345 aaven)

6 6
2 2
| | | N | [ ]
o) i 2 3 4 0 2 3 4
ki3 K13
C C
8 / 8-
/ |
// !
|
6F // 6|
/ |
// - u’ Stable
Pl
b =a
¢ [ . ¢ I ————Unstable
ol K = 8K 2& K =32K
I I | i | | ] |
o} 1 2 3 4 0 ! 2 3 4
K13A K13A
c c

Ficure 2.—Dimensionless load-shortening curves for the three-element column.

Controlled loading.
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According to the minimum-potential-energy
method for this case

dII
M= on=0

or, since the variation of 7 is arbitrary,

o [ 16K 3K (1a—3m) 12 5 |0

7=0 }»
£=IA

Therefore, either
(19)

or

r (20)

C C

2 JA—Q P
#=ia 9l2K16 gKl
I{'J

Alternatively, by substituting for 5 instead of £ in
the equation expressing potential energy and then
varying the potential energy with respect to £
instead of 7, the following additional result is
obtained:

£=0

(@1
LA (21)
=3

Note that the three sets of results given by
equations (19), (20), and (21) can be classified,
respectively, by =0, by both £520 and 70, and
by £¢=0.

In order to plot load-shortening curves, as was
done for controlled loading, use is made of the
fact that the derivative of the equation for strain
energy with respect to the shortening is equal to
the reaction compressive load P. First substitute
for £ and 5 in the equation for strain energy for
each of the three cases. Then differentiation of
the equation for strain energy with respect to A
leads to expressions for P which are identical to
those obtained for controlled loading. Thus, the
equilibrium configurations are the same for both
types of loads, as might be expected. The stability
of these equilibrium configurations, however, can
be different.

The second variation of the equation for
potential energy from which £ has been eliminated
is

ol
p =927 (5.2
FII=3 5 (o)

Similarly, the second variation of the equation for
potential energy from which 5 has been eliminated
is

oIl
o1 =b—£2 (68)*

Since, for stability, the second variation must be

- oIl Q11 -
positive, both o and e must be positive for
the various equilibrium solutions to be stable.
Use of these conditions leads to the following
ranges of stability:

For =0,
4C
lA<lTK.; (22)
For £=0,
9C
lA>m—{ (23)
For both £70 and 70,
9C 40
W>ZA>Z2K1 (24)

In all other ranges of equilibrium the column is
unstable.

Load-shortening curves for both the stable and
unstable configurations for the column subject to
a controlled shortening are shown in figure 3.
These curves are identical to those obtained for
controlled loading in figure 2, except that in some
ranges the curves of figure 3 represent stable
configurations, whereas, in figure 2 they represent
unstable configurations.

RESULTS AND DISCUSSION

The results shown in figures 2 and 3 have some
very interesting features. For a better under-
standing of these features, consider the schematic
diagram in figure 4 of the load-shortening curves
of a column corresponding roughly to the results
presented in figures 2 and 3 for K;=2K. When
subject to controlled shortening (fig. 4(a)), the
column first buckles (at A) into a symmetric
buckle pattern (AB: =0). As the shortening in-
creases, the load supported by the column increases
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8

Al Pl
¢4 ¢ 4
2 2
1 1 | I
0 ] 2 3 4 0
K13
c
8r / 81 |
/ |
// I
GL / et |
/ /
/ |
Pl / Pl — Stable
T4 / T 4r- ——— Unstable

Ky =32K
| { | | 1 { 1 ]
0 I 2 3 2 0 I 2 3 a
K13a K13a
c c

Figure 3.—Dimensionless load-shortening curves for the three-element column.

up to the secondary buckling load (B) which
occurs at the intersection of the transition curve
(BC; both £5#0 and 7520) and the curve for sym-
metric buckling. The transition curve provides a
continuous stable equilibrium path from the curve
for symmetric buckling to the curve for antisym-
metric buckling (CD; £=0).. Thus, as the shorten-
ing is increased beyond the secondary buckling
load, the load falls and then begins to rise again.
If the shortening is now decreased (for example, at
D), the path is retraced as is indicated in figure
4(a) (DEFQG).

The load-shortening curve for the same column
subject to a controlled load is shown schematically
in figure 4(b). For this case the transition curve
(IL) does not represent a stable equilibrium con-
figuration. As the load is increased beyond that
for secondary buckling (I), the column, in seeking
a stable equilibrium configuration, changes buckle
pattern abruptly from the symmetric (HI) to the

Controlled shortening.

- antisymmetric (JK) form. Since the load is con-

trolled, the change in buckle pattern occurs at a
constant load (IJ). (For a case of contrclled
shortening when there are no continuous stable
paths available, the jump is at constant shorten-
ing.) Upon unloading (at K, for instance), the
antisymmetric pattern provides a stable path only
for Joads greater than the intersection of the curve
for antisymmetric buckling with the transition
curve (that is, from K to L.). When this load (at
L) is reached, there is again an abrupt change in
buckle pattern at constant load (LM) back into
the symmetric form. The area enclcsed in the
loop so formed, as shown in figure 4(b) (IJLM),
is a measure of the energy expended in the abrupt
changes. Here the system behaves nonconserva-
tively, while the system considered in figure 4(a)
behaves conservatively.

Of the results presented in figures 2 and 3, con-
tinuous stable equilibrium paths in the transition
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(a)

(b)

Ki3a
[

(a) Controlled shortening.

Ki3a
c

(b) Controlled loading..

Fiaure 4.—Schematic diagrams of loading and unloading ot a particular column which has a stable transition for con-
trolled shortening and unstable transition for controlled loading.

from the symmetric to the antisymmetric buckle
configuration occur for both controlled loading and
controlled shortening only for high values of K.
For low values of K, the stability of the equilib-
rium curves indicates that abrupt changes will
occur for both kinds of loadings. For intermediate
values of K, continuous stable equilibrium paths
are available when the column is subject to con-
trolled shortening but are not available when the
column is subject to a controlled load, as just
shown in the discussion of figure 4.

The results shown in figures 2 and 3 indicate
that the load-shortening curves determining equi-
librium and the point of secondary buckling are
independent of the method of loading but that
some segments of the load-shortening curves are
stable or unstable according to the method of
loading. Stability occurs as one might expect in-
tuitively. For example, for a controlled load, if
the transition path from the curve for symmetric
buckling to that for antisymmetric buckling in-
dicates an increasing load, then the transition
path is stable; otherwise, the transition path is
unstable.

Note that the access from the symmetric to the
antisymmetric configuration is available only after
secondary buckling, and secondary buckling al-
ways occurs for loads and shortenings greater than

537454—60—2

those given by the intersection of the load-shorten-
ing curves for the symmetric and antisymmetric
equilibrium configurations. Thus, intersections of
load-shortening curves for the various equilibrium
configurations indicate impending (but not neces-
sarily imminent) changes in buckle patterns. (This
condition existed for the model analyzed for every
case except for the trivial case of K;=0 where the
changes in buckle patterns occurred at infinite
load.)

The system under consideration, of course, is a
conservative one, and, so long as equilibrium paths
are followed, the system behaves conservatively.
Therefore, the strain energy is equal to the area
under the load-shortening curve if equilibrium
paths (stable or unstable) are followed. Since the
strain energy is independent of the path, so is the
area under the load-shortening curve independent
of the equilibrium paths. As a consequence, it can
be seen in figures 2 and 3 that the area within the
triangle to the right of the intersection of the load-
shortening curves for the symmetric and antisym-
metric equilibrium configurations is equal to the
area within the triangle to the left of this inter-
section.

In order that the change in buckle pattern dur-
ing loading may be better visualized, the deflec-
tions have been plotted in figure 5 for one of the
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Figure 5.—Dimensionless equilibrium deflections of a
three-element column. Controlled shortening.

columns which has a continuous loading path for
controlled shortening as indicated by its load-
shortening curve in figure 3. At the point shorten-
ing begins, the column buckles into a symmetric
configuration (w;=w.) as indicated by the solid
curve starting from the origin in figure 5. With in-
creases 1n shortening, the deflections increase until
the shortening required for secondary buckling is
reached. At this point and with an increase in
shortening a stable transition configuration is
formed which is neither symmetric nor antisym-
metric (w;# +w,). Continuing to increase the
shortening in this transition range leads to an anti-

symmetric configuration (w;=—w), and still
e
K 2K @
Stable
———— Unstable
6 -

Wio W0 O,

_straight column.

more increases lead to larger deflections in the
antisymmetric configuration. The arrows along
the curves in figure 5 indicate the directions the
deflections would take upon loading. The deflec-
tions would take the opposite directions for
unloading.

The equations of the present study may be
extended to include the effects of initial deflection
in a straightforward manner. Some typical re-
sults of this extension are presented in figure 6.
In addition to the load-shortening curve for a
column with zero initial deflection, curves are
shown for a column with symmetric initial deflec-

. [ C
tion (wl, =W, ,=0.1 W> and for a colug

with asymmetric initial deflection <w1’0=0.2\/ %
and w2,0=0>- These results show that a column

with initial deflections can have either a higher or
a lower secondary buckling load than an initially
As might be expected, this
secondary buckling load occurs at a larger short-
ening for a column with initial deflections than for
an initially straight column. The ranges of stable
equilibrium for the column with initial deflections
follow the same general pattern as for the initially
straight column.

No curve is shown for a purely antisymmetric
initial deflection since no change in buckle pattern

8~
(b)

Pl 41
Ala
2_
| I
o ] 2
ki3
C

(a) Controlled shortening.

(b) Controlled loading.

Ficure 6.—Dimensionless load-shortening curves showing the effects of initial deflections wi,, and wuz,, for a
three-element column.
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occurs. The column immediately assumes the
antisymmetric configuration and remains in that
configuration.

EXTENSION TO OTHER PROBLEMS

The results just obtained for the initially
- straight three-element column on a nonlinear
elastic foundation indicate that loading beyond the
load corresponding to the intersection of curves for
the various equilibrium configurations of an
initially perfect elastic structure ultimately brings
about a change in the buckle pattern. The load
(or shortening) at which a change in buckle pattern
takes place is known once all the equilibrium paths
of loading have been determined from the basic
equations. In determining these paths it should
be remembered that, for a conservative system,
these (continuous) equilibrium paths will lead to
the same strain energy regardless of the path of
loading. In order to determine the stability of an
equilibrium position for the three-element column
subject to a certain type of loading, it was neces-
sary to examine the second variation of the total
potential energy. It is supposed that such a pro-
cedure would also be necessary for other problems.
For a system having abrupt changes in buckle
patterns, hysteresis-type loops in the load-
shortening curves can be calculated where the
area of the loop will indicate the energy losses.
The behavior of the three-element column is
directly analogous to the behavior of flat plates in
the postbuckling range as specified by the Von
Kérmén large-deflection theory for plates, since
the nonlinear restraint of the springs on the
column is much like the nonlinear restraint of
stretching of the plate middle surface (see ref. 1).
Some of the load-shortening curves of the present
analysis for the three-element column resemble the
familiar load-shortening curves for a thin-walled
cylinder in axial compression if the prebuckling
configuration for the cylinder is likened to the first

(symmetric) equilibrium configuration for the
column. Thus, in the question of the mecha-
nism of change in buckle pattern, the present
analysis affirms the principle that the initial
equilibrium configuration is maintained until it
becomes unstable, at which point the structure
seeks another stable equilibrium configuration.
This principle contrasts with the energy principle
introduced in references 2 and 3.

CONCLUDING REMARKS

The analysis of a simple model has been pre-
sented which indicates the action of change in
buckle pattern for two types of loading. The
results indicate that, for initially perfect speci-
mens, intersections between curves for the various
equilibrium configurations lead to changes in the
buckle patterns. The load at which a change in a
buckle pattern occurs is shown to be independent
of the type of loading, but the manner of change
does depend on the type of loading. The change
can be continuous or discontinuous, depending on
the structure and on the type of loading. For the
case where the change was continuous, for the
model analyzed, a stable transition equilibrium
configuration which was neither symmetric nor
antisymmetric provided the path of change from
the symmetric to the antisymmetric equilibrium
configuration.

LanGLEY RESEARCH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LanGLEY FIELD, VA., January 30, 1959.
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